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J, Phys. A: Math. Gen. 13 (1980) L35-L37. Printed in Great Britain 

LETTER TO THE EDITOR 

One-dimensional band calculations 

J Killingbeck 
Physics Department, University of Hull, Hull HU6 7RX, UK 

Received 7 December 1979 

Abstract. Recent calculations on one-dimensional energy bands are improved remarkably 
by using a simple perturbation approach with D4 as the perturbation. The theoretical 
approach used is also relevant to the problem of including relativistic mass corrections in the 
Schrodinger equation. 

In a recent work, Vigneron and Lambin (1979) have used a continued fraction approach 
to calculate one-dimensional band structures. They started from the Schrodinger 
equation 

-D2$ + V$ = E$ (1) 

$ ( x  +L) = eik"$(x) (2) 

which must be solved with the periodic boundary condition 

where L is the length of the unit cell and k the wavenumber of the Bloch function being 
considered. They converted equation (1) to the finite difference form 

Killingbeck (1977) treated (3) by a numerical integration process, whereas Vigneron 
and Lambin (1979) used a continued fraction approach. We wish to point out here that 
the accuracy of both techniques can be remarkably improved by the almost trivial 
expedient of adding the extra term &h2( V- E)'$(x) to the right-hand side of (3). This 
is much simpler than modifying the equations of the theory so that the Numerov method 
of treating differential equations can be applied; this latter course was suggested by 
Vigneron and Lambin (1979) in their concluding discussion. The simple procedure of 
this Letter has not previously been applied to band theory calculations, but has been 
used for perturbed oscillator problems (Killingbeck 1980). 

The theory of the correction term can be described briefly as follows. If we denote 
the finite difference operator on the left of (3) by S 2 ,  then a simple Taylor expansion 
gives 

S2$=D2$+7$h2D4$+. . . (4) 

( 5 )  
1 2 4  = ( V - E ) $ + n h  D $+ . . . 

if we use (1). To first order of perturbation theory the energy shift caused by the 
perturbing term &h2D4 (which represents the difference between the true Schrodinger 
equation and our simulation of it) will be given by the expectation value &h2(D4) taken 
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with respect to the function $ which obeys (1). This $ is unknown, but for a variety of 
boundary conditions, including the periodic ones of equation (2), we can use the Dirac 
operator algebra to obtain 

(D4)= ((-D2)(-D2))=((V-E)2) (6)  

on using (1). Thus, to lowest order, we can siinulate the effect of the term &h2D4$ by 
the effective operator term &h2(V-E)2$ in order to calculate the energy. The 
calculations of Vigneron and Lambin (1979) can therefore be repeated with no change 
in their equations except that their quantity b = 2 + h2(V-E)  must be modified 
throughout by adding a term Ah4( V -E)2 .  We have repeated their calculations for the 
potential V = 2 cos 2x, and the results for the band edges are displayed in table 1. Since 
E ( k )  is a monotonic function of Ikl in one-dimensional band theory, it is only necessary 
to deal with the cases k = 0 and k = r / L  to obtain the band edges. For these k-values $ 
is real and obeys simple boundary conditions of the homogeneous Neumann type (at 
k = 0) or of the homogeneous Dirichlet type (at k = .rr/L), if the potential is inversion- 
symmetric. We emphasise, however, that the correction term which we use is applic- 
able for any k-value in the Brillouin zone. The E ( N )  values in the table refer to the 
calculations of Vigneron and Lambin (1979) for N strips, which we repeated and 
sharpened to six decimal places. The E ' ( N )  values are energies calculated by including 
the extra correction term discussed in this Letter. The E'(oo) value is found by an h4 
extrapolation from E'(25) and E1(50), and agrees to the accuracy quoted with the exact 
result from the theory of the Mathieu equation. The improvement produced by the 
correction term is remarkable: a calculation dividing the unit cell into 25 strips gives 
much better results than the original 300 strip calculation. An h 4  extrapolation gives 
very good energy values, although the wavefunction will still have an error of order h 2 .  
Since only relatively few strips are needed, it would be possible to treat potential 
functions which are specified numerically; modern programmable calculators have 
sufficient memory capacity to store the number of data values involved. 

Table 1. Band edges for V = 2 cos 2x (notation as explained in the text). 

Lower band Upper band 

~ ( 5 0 )  -0.455 642 -0.110 873 1.858 291 3.911 444 
E(300) -0.455 152 -0.110 267 1.859 090 3.916 878 
E'(25) -0.455 145 -0.110 253 1.859 104 3.917 062 
E'(50) -0.455 139 -0.110 249 1.859 108 3.917 027 
E ' ( 4  -0.455 139 -0.110 249 1,859 108 3.917 025 

In the preceding discussion we have regarded the D4 term as arising from a 
finite-difference procedure, and have taken $ to be unknown. However, the operator 
D4 also appears if we use the relativistic mass correction in the Schrodinger equation; in 
appropriate units the equation takes the form 

c2[(1 -2D2/~2) ' '2-1]$+ V$=E$ (7) 
=[-D2$-(1/2~2)D4$+ . . .]+ V$. (8) 

To obtain (8) we have used units in which -D2 is the non-relativistic kinetic energy 
operator, to be consistent with the rest of this work. Condon and Shortley (1970) 
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employed units in which -3D’ is the non-relativistic kinetic energy operator, but this 
does not affect the gist of our comments below about their procedure. 

Our previous argument shows that the expectation value of the D4 operator is 
the same as that of the operator (V-E)’  for the non-relativistic wavefunction 
(which will be known for simple problems). Alternatively, we could get the energy 
correct to lowest order by solving a modified Schrodinger equation in which the term 
-(1/2c2)( V-E)’ is added to the potential V. Condon and Shortley (1970) do this, but 
they derive the modified equation by wrongly asserting that D’ commutes with ( V  - E ) .  
This leads to the (incorrect) result D4$ = ( V  -E)’$ which they treat as exact. In fact D’ 
does not commute with ( V  - E ) :  the correct result is as follows, after using (1): 

D4$ = ( V - E)’$ I- (D’ V ) $  + 2(D V)D$. (9) 
What our previous discussion has shown is that the last two terms in (9), although 
non-zero, can be omitted from the modified Schrodinger equation, since they have no 
first-order effect on the energy; however they will affect the wavefunction. Accord- 
ingly, the energy formula given by Condon and Shortley (1970) is correct to first order in 
c (for their problem of the hydrogen atom) but could be obtained simply and directly 
by evaluating the first-order energy using the equivalence D4 = (E  - V)’. Strictly 
speaking, the truncation used in (8) does not give true bound states. This can be seen 
most easily for the case V = x ’ ;  changing to momentum representation converts (8) to 
the equivalent form 

- 2  

-Dz$+x2$-(1/2c2)x4$ =E$. (10) 
This perturbed oscillator Hamiltonian has no bound states, whereas the full potential 
function 

V=c’[(l+2x’/c2)’”-1] (1 1) 
does give bound states, the eigenvalues of which can be found by using a numerical 
procedure such as that of Killingbeck (1977), suitably improved in the manner 
described in this Letter. 
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